Copied to
clipboard

G = C3×C23.D4order 192 = 26·3

Direct product of C3 and C23.D4

direct product, metabelian, nilpotent (class 4), monomial, 2-elementary

Aliases: C3×C23.D4, C4.D4.C6, C22⋊C42C12, (C22×C4)⋊3C12, (C22×C12)⋊4C4, (C2×C12).18D4, C23⋊C4.1C6, C23.2(C3×D4), (C22×C6).2D4, C23.2(C2×C12), C6.33(C23⋊C4), (C6×D4).175C22, C22.D4.1C6, (C2×C4).2(C3×D4), (C3×C22⋊C4)⋊4C4, (C2×D4).2(C2×C6), C2.7(C3×C23⋊C4), (C3×C23⋊C4).3C2, (C22×C6).9(C2×C4), (C3×C4.D4).2C2, (C2×C6).74(C22⋊C4), C22.11(C3×C22⋊C4), (C3×C22.D4).4C2, SmallGroup(192,158)

Series: Derived Chief Lower central Upper central

C1C23 — C3×C23.D4
C1C2C22C23C2×D4C6×D4C3×C23⋊C4 — C3×C23.D4
C1C2C22C23 — C3×C23.D4
C1C6C2×C6C6×D4 — C3×C23.D4

Generators and relations for C3×C23.D4
 G = < a,b,c,d,e,f | a3=b2=c2=d2=1, e4=d, f2=b, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, ebe-1=bcd, bf=fb, ece-1=fcf-1=cd=dc, de=ed, df=fd, fef-1=be3 >

Subgroups: 162 in 68 conjugacy classes, 26 normal (all characteristic)
C1, C2, C2, C3, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, D4, C23, C12, C2×C6, C2×C6, C22⋊C4, C22⋊C4, C4⋊C4, M4(2), C22×C4, C2×D4, C24, C2×C12, C2×C12, C3×D4, C22×C6, C23⋊C4, C4.D4, C22.D4, C3×C22⋊C4, C3×C22⋊C4, C3×C4⋊C4, C3×M4(2), C22×C12, C6×D4, C23.D4, C3×C23⋊C4, C3×C4.D4, C3×C22.D4, C3×C23.D4
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, C12, C2×C6, C22⋊C4, C2×C12, C3×D4, C23⋊C4, C3×C22⋊C4, C23.D4, C3×C23⋊C4, C3×C23.D4

Smallest permutation representation of C3×C23.D4
On 48 points
Generators in S48
(1 27 41)(2 28 42)(3 29 43)(4 30 44)(5 31 45)(6 32 46)(7 25 47)(8 26 48)(9 33 22)(10 34 23)(11 35 24)(12 36 17)(13 37 18)(14 38 19)(15 39 20)(16 40 21)
(2 36)(3 7)(4 34)(6 40)(8 38)(9 13)(10 44)(12 42)(14 48)(16 46)(17 28)(18 22)(19 26)(21 32)(23 30)(25 29)(33 37)(43 47)
(1 39)(2 36)(3 33)(4 38)(5 35)(6 40)(7 37)(8 34)(9 43)(10 48)(11 45)(12 42)(13 47)(14 44)(15 41)(16 46)(17 28)(18 25)(19 30)(20 27)(21 32)(22 29)(23 26)(24 31)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(2 34 36 4)(3 33 7 37)(6 38 40 8)(9 47 13 43)(10 12 44 42)(11 15)(14 16 48 46)(17 30 28 23)(18 29 22 25)(19 21 26 32)(20 24)(35 39)

G:=sub<Sym(48)| (1,27,41)(2,28,42)(3,29,43)(4,30,44)(5,31,45)(6,32,46)(7,25,47)(8,26,48)(9,33,22)(10,34,23)(11,35,24)(12,36,17)(13,37,18)(14,38,19)(15,39,20)(16,40,21), (2,36)(3,7)(4,34)(6,40)(8,38)(9,13)(10,44)(12,42)(14,48)(16,46)(17,28)(18,22)(19,26)(21,32)(23,30)(25,29)(33,37)(43,47), (1,39)(2,36)(3,33)(4,38)(5,35)(6,40)(7,37)(8,34)(9,43)(10,48)(11,45)(12,42)(13,47)(14,44)(15,41)(16,46)(17,28)(18,25)(19,30)(20,27)(21,32)(22,29)(23,26)(24,31), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (2,34,36,4)(3,33,7,37)(6,38,40,8)(9,47,13,43)(10,12,44,42)(11,15)(14,16,48,46)(17,30,28,23)(18,29,22,25)(19,21,26,32)(20,24)(35,39)>;

G:=Group( (1,27,41)(2,28,42)(3,29,43)(4,30,44)(5,31,45)(6,32,46)(7,25,47)(8,26,48)(9,33,22)(10,34,23)(11,35,24)(12,36,17)(13,37,18)(14,38,19)(15,39,20)(16,40,21), (2,36)(3,7)(4,34)(6,40)(8,38)(9,13)(10,44)(12,42)(14,48)(16,46)(17,28)(18,22)(19,26)(21,32)(23,30)(25,29)(33,37)(43,47), (1,39)(2,36)(3,33)(4,38)(5,35)(6,40)(7,37)(8,34)(9,43)(10,48)(11,45)(12,42)(13,47)(14,44)(15,41)(16,46)(17,28)(18,25)(19,30)(20,27)(21,32)(22,29)(23,26)(24,31), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (2,34,36,4)(3,33,7,37)(6,38,40,8)(9,47,13,43)(10,12,44,42)(11,15)(14,16,48,46)(17,30,28,23)(18,29,22,25)(19,21,26,32)(20,24)(35,39) );

G=PermutationGroup([[(1,27,41),(2,28,42),(3,29,43),(4,30,44),(5,31,45),(6,32,46),(7,25,47),(8,26,48),(9,33,22),(10,34,23),(11,35,24),(12,36,17),(13,37,18),(14,38,19),(15,39,20),(16,40,21)], [(2,36),(3,7),(4,34),(6,40),(8,38),(9,13),(10,44),(12,42),(14,48),(16,46),(17,28),(18,22),(19,26),(21,32),(23,30),(25,29),(33,37),(43,47)], [(1,39),(2,36),(3,33),(4,38),(5,35),(6,40),(7,37),(8,34),(9,43),(10,48),(11,45),(12,42),(13,47),(14,44),(15,41),(16,46),(17,28),(18,25),(19,30),(20,27),(21,32),(22,29),(23,26),(24,31)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(2,34,36,4),(3,33,7,37),(6,38,40,8),(9,47,13,43),(10,12,44,42),(11,15),(14,16,48,46),(17,30,28,23),(18,29,22,25),(19,21,26,32),(20,24),(35,39)]])

39 conjugacy classes

class 1 2A2B2C2D3A3B4A4B4C4D4E4F6A6B6C6D6E6F6G6H8A8B12A···12F12G···12L24A24B24C24D
order1222233444444666666668812···1212···1224242424
size112441144488811224444884···48···88888

39 irreducible representations

dim11111111111122224444
type+++++++
imageC1C2C2C2C3C4C4C6C6C6C12C12D4D4C3×D4C3×D4C23⋊C4C23.D4C3×C23⋊C4C3×C23.D4
kernelC3×C23.D4C3×C23⋊C4C3×C4.D4C3×C22.D4C23.D4C3×C22⋊C4C22×C12C23⋊C4C4.D4C22.D4C22⋊C4C22×C4C2×C12C22×C6C2×C4C23C6C3C2C1
# reps11112222224411221224

Matrix representation of C3×C23.D4 in GL4(𝔽73) generated by

64000
06400
00640
00064
,
1000
0100
00720
00072
,
0100
1000
0001
0010
,
72000
07200
00720
00072
,
23505050
23502323
23232350
50502350
,
1000
07200
00072
0010
G:=sub<GL(4,GF(73))| [64,0,0,0,0,64,0,0,0,0,64,0,0,0,0,64],[1,0,0,0,0,1,0,0,0,0,72,0,0,0,0,72],[0,1,0,0,1,0,0,0,0,0,0,1,0,0,1,0],[72,0,0,0,0,72,0,0,0,0,72,0,0,0,0,72],[23,23,23,50,50,50,23,50,50,23,23,23,50,23,50,50],[1,0,0,0,0,72,0,0,0,0,0,1,0,0,72,0] >;

C3×C23.D4 in GAP, Magma, Sage, TeX

C_3\times C_2^3.D_4
% in TeX

G:=Group("C3xC2^3.D4");
// GroupNames label

G:=SmallGroup(192,158);
// by ID

G=gap.SmallGroup(192,158);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-2,-2,168,197,680,1683,1271,375,6053]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^2=c^2=d^2=1,e^4=d,f^2=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,e*b*e^-1=b*c*d,b*f=f*b,e*c*e^-1=f*c*f^-1=c*d=d*c,d*e=e*d,d*f=f*d,f*e*f^-1=b*e^3>;
// generators/relations

׿
×
𝔽